End-to-end distribution function of stiff polymers for all persistence lengths.
نویسندگان
چکیده
We set up recursion relations for calculating all even moments of the end-to-end distance of Porod-Kratky wormlike chains in D dimensions. From these moments we derive a simple analytic expression for the end-to-end distribution in three dimensions valid for all peristence lengths. It is in excellent agreement with Monte Carlo data for stiff chains and approaches the Gaussian random-walk distributions for low stiffness.
منابع مشابه
End-to-end distribution function of two-dimensional stiff polymers for all persistence lengths
We set up and solve a recursion relation for all even moments of a two-dimensional stiff polymer (Porod–Kratky wormlike chain) and determine from these moments a simple analytic expression for the end-to-end distribution applicable for all persistence lengths. 2004 Published by Elsevier B.V.
متن کاملPerturbation Theory for Path Integrals of Stiff Polymers
The wormlike chain model of stiff polymers is a nonlinear σ-model in one spacetime dimension in which the ends are fluctuating freely. This causes important differences with respect to the presently available theory which exists only for periodic and Dirichlet boundary conditions. We modify this theory appropriately and show how to perform a systematic large-stiffness expansions for all physica...
متن کاملDistribution Function of the End-to-End Distance of Semiflexible Polymers
The distribution function of the end-to-end distance of a semiflexible polymer, G(R;L) (where R denotes the end-to-end distance and L the contour length), is calculated using a meanfield-like approach. The theory yields an extremely simple expression for G(R;L) which is in excellent agreement with Monte Carlo simulations. The second and fourth moments of G(R;L) agree with exact results for a se...
متن کاملOff-lattice Monte Carlo simulation of supramolecular polymer architectures.
We introduce an efficient, scalable Monte Carlo algorithm to simulate cross-linked architectures of freely jointed and discrete wormlike chains. Bond movement is based on the discrete tractrix construction, which effects conformational changes that exactly preserve fixed-length constraints of all bonds. The algorithm reproduces known end-to-end distance distributions for simple, analytically tr...
متن کاملOn the behaviour of short Kratky-Porod chain
Using the exact computation of a large number of moments of the distribution function of the end-to-end distance G(r, N) of the worm-like chain, we have established the analytical form of the coefficients in Taylor expansions of the moments for short chain lengths N . The knowledge of these coefficients enabled us to resummate the moment expansion of G(r, N) by taking into account consecutively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 71 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2005